123 research outputs found

    Characterization of the non-Gaussianity of radio and IR point sources at CMB frequencies

    Get PDF
    This study, using publicly available simulations, focuses on the characterization of the non-Gaussianity produced by radio point sources and by infrared (IR) sources in the frequency range of the cosmic microwave background from 30 to 350 GHz. We propose a simple prescription to infer the angular bispectrum from the power spectrum of point sources considering independent populations of sources, with or without clustering. We test the accuracy of our prediction using publicly available all-sky simulations of radio and IR sources and find very good agreement. We further characterize the configuration dependence and the frequency behaviour of the IR and radio bispectra. We show that the IR angular bispectrum peaks for squeezed triangles and that the clustering of IR sources enhances the bispectrum values by several orders of magnitude at scales ℓ∼ 100. At 150 GHz the bispectrum of IR sources starts to dominate that of radio sources on large angular scales, and it dominates the whole multipole range at 350 GHz. Finally, we compute the bias on fNL induced by radio and IR sources. We show that the positive bias induced by radio sources is significantly reduced by masking the sources. We also show, for the first time, that the form of the IR bispectrum mimics a primordial ‘local' bispectrum fNL. The IR sources produce a negative bias which becomes important for Planck-like resolution and at high frequencies (ΔfNL∼−6 at 277 GHz and ΔfNL∼−60-70 at 350 GHz). Most of the signal being due to the clustering of faint IR sources, the bias is not reduced by masking sources above a flux limit and may, in some cases, even be increased due to the reduction of the shot-noise ter

    Large scale directional anomalies in the WMAP 5yr ILC map

    Full text link
    We study the alignments of the low multipoles of CMB anisotropies with specific directions in the sky (i.e. the dipole, the north Ecliptic pole, the north Galactic pole and the north Super Galactic pole). Performing 10510^5 random extractions we have found that: 1) separately quadrupole and octupole are mildly orthogonal to the dipole but when they are considered together, in analogy to \cite{Copi2006}, we find an unlikely orthogonality at the level of 0.8% C.L.; 2) the multipole vectors associated to =4\ell=4 are unlikely aligned with the dipole at 99.199.1 % C.L.; 3) the multipole vectors associated to =5\ell=5 are mildly orthogonal to the dipole but when we consider only maps that show exactly the same correlation among the multipoles as in the observed WMAP 5yr ILC, these multipole vectors are unlikely orthogonal to the dipole at 99.799.7 % C.L..Comment: 12 pages, 10 figures, 3 tables. Accepted for publication in JCAP. Few references added and some typos correcte

    The Kolmogorov-Smirnov test for the CMB

    Full text link
    We investigate the statistics of the cosmic microwave background using the Kolmogorov-Smirnov test. We show that, when we correctly de-correlate the data, the partition function of the Kolmogorov stochasticity parameter is compatible with the Kolmogorov distribution and, contrary to previous claims, the CMB data are compatible with Gaussian fluctuations with the correlation function given by standard Lambda-CDM. We then use the Kolmogorov-Smirnov test to derive upper bounds on residual point source power in the CMB, and indicate the promise of this statistics for further datasets, especially Planck, to search for deviations from Gaussianity and for detecting point sources and Galactic foregrounds.Comment: Improved significance of the results (which remain unchanged) by using patches instead of ring segments in the analysis. Added sky maps of the Kolmogorov-parameter for original and de-correlated CMB ma

    Efficient cosmological parameter sampling using sparse grids

    Full text link
    We present a novel method to significantly speed up cosmological parameter sampling. The method relies on constructing an interpolation of the CMB-log-likelihood based on sparse grids, which is used as a shortcut for the likelihood-evaluation. We obtain excellent results over a large region in parameter space, comprising about 25 log-likelihoods around the peak, and we reproduce the one-dimensional projections of the likelihood almost perfectly. In speed and accuracy, our technique is competitive to existing approaches to accelerate parameter estimation based on polynomial interpolation or neural networks, while having some advantages over them. In our method, there is no danger of creating unphysical wiggles as it can be the case for polynomial fits of a high degree. Furthermore, we do not require a long training time as for neural networks, but the construction of the interpolation is determined by the time it takes to evaluate the likelihood at the sampling points, which can be parallelised to an arbitrary degree. Our approach is completely general, and it can adaptively exploit the properties of the underlying function. We can thus apply it to any problem where an accurate interpolation of a function is needed.Comment: Submitted to MNRAS, 13 pages, 13 figure

    CMB polarization as a probe of the anomalous nature of the Cold Spot

    Get PDF
    One of the most interesting explanations for the non-Gaussian Cold Spot (CS) detected in the WMAP data by Vielva et al. 2004, is that it arises from the interaction of the CMB radiation with a cosmic texture (Cruz et al. 2007b). In this case, a lack of polarization is expected in the region of the spot, as compared to the typical values associated to large fluctuations of a GIRF. In addition, other physical processes related to a non-linear evolution of the gravitational field could lead to a similar scenario. However, some of these alternative scenarios (e.g., a large void in the large scale structure) have been shown to be very unlikely. In this work we characterise the polarization properties of the Cold Spot under both hypotheses: a large Gaussian spot and an anomalous feature generated, for instance, by a cosmic texture. We propose a methodology to distinguish between them, and we discuss its discrimination power as a function of the instrumental noise level. In particular, we address the cases of current experiments, like WMAP and Planck, and others in development as QUIJOTE. We find that for an ideal experiment the Gaussian hypothesis could be rejected at a significance level better than 0.8%. While WMAP is far from providing useful information in this respect, we find that Planck will be able to reach a significance of around 7%; in addition, we show that the ground-based experiment QUIJOTE could provide a significance of around 1%. If these results are combined with the significance level found for the CS in temperature, the capability of QUIJOTE and Planck to reject the alternative hypothesis becomes 0.025% and 0.124%, respectively.Comment: 7 pages, 3 figures, accepted in MNRAS. Minor changes made to match the final versio

    Anomalous variance in the WMAP data and Galactic Foreground residuals

    Get PDF
    A previous work (Monteser\'in et al. 2008) estimated the CMB variance from the three-year WMAP data, finding a lower value than expected from Gaussian simulations using the WMAP best-fit cosmological model. We repeat the analysis on the five-year WMAP data using a new estimator with lower bias and variance. Our results confirm this anomaly at higher significance, namely with a p-value of 0.31%. We perform the analysis using different exclusion masks, showing that a particular region of the sky near the Galactic plane shows a higher variance than 95.58% of the simulations whereas the rest of the sky has a lower variance than 99.96% of the simulations. The relative difference in variance between both regions is bigger than in 99.64% of the simulations. This anisotropic distribution of power seems to be causing the anomaly since the model assumes isotropy. Furthermore, this region has a clear frequency dependence between 41GHz and 61GHz or 94GHz suggesting that Galactic foreground residuals could be responsible for the anomaly. Moreover, removing the quadrupole and the octopole from data and simulations the anomaly disappears. The variance anomaly and the previously reported quadrupole and octopole alignment seem therefore to be related and could have a common origin. We discuss different possible causes and Galactic foreground residuals seem to be the most likely one. These residuals would affect the estimation of the angular power spectrum from the WMAP data, which is used to generate Gaussian simulations, giving rise to an inconsistency between the estimated and expected CMB variance. If the presence of residuals is confirmed, the estimation of the cosmological parameters could be affected.Comment: Accepted for publication in MNRAS. Analysis section rewritten. New exclusion masks are used finding a high variance region. Relation to the Quadrupole-Octopole alignment foun

    Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes

    Full text link
    We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisphere of maximum accelerating expansion rate is in the direction (l,b)=(3093+23,1810+11)(l,b)=({309^\circ}^{+23^\circ}_{-3^\circ}, {18^\circ}^{+11^\circ}_{-10^\circ}) (\omm=0.19) while the hemisphere of minimum acceleration is in the opposite direction (l,b)=(1293+23,1811+10)(l,b)=({129^\circ}^{+23^\circ}_{-3^\circ},{-18^\circ}^{+10^\circ}_{-11^\circ}) (\omm=0.30). The level of anisotropy is described by the normalized difference of the best fit values of \omm between the two hemispheres in the context of \lcdm fits. We find a maximum anisotropy level in the Union2 data of \frac{\Delta \ommax}{\bomm}=0.43\pm 0.06. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about 3030% of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than 11%. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.Comment: 10 pages, 7 figures. Accepted in JCAP (to appear). Extended analysis with redshift tomography of SnIa, included errorbars and increased number of axes. The Mathematica 7 files with the data used for the production of the figures along with a Powerpoint file with additional figures may be downloaded from http://leandros.physics.uoi.gr/anisotrop

    Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters

    Get PDF
    We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. 14 new clusters were detected by XMM, including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6 clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We discuss our results in the context of the full XMM validation programme, in which 51 new clusters have been detected. This includes 4 double and 2 triple systems, some of which are chance projections on the sky of clusters at different z. We find that association with a RASS-BSC source is a robust indicator of the reliability of a candidate, whereas association with a FSC source does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4 arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this level. The corresponding mass threshold depends on z. Systems with M500 > 5 10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. (abridged)Comment: accepted by A&
    corecore